Go Solid

🏠 首页 / Golang 编程 / Go 程序 SOLID 设计原则

Go 程序 SOLID 设计原则 #

可重用软件设计的五个原则,SOLID 原则:

  • 单一职责原则(Single Responsibility Principle)
  • 开放 / 封闭原则(Open / Closed Principle)
  • 里氏替换原则(Liskov Substitution Principle)
  • 接口隔离原则(Interface Segregation Principle)
  • 依赖倒置原则(Dependency Inversion Principle)

单一职责原则 #

SOLID 的第一个原则,S,是单一责任原则。

A class should have one, and only one, reason to change. – Robert C Martin

现在 Go 显然没有 classses - 相反,我们有更强大的组合概念 - 但是如果你能回顾一下 class 这个词的用法,我认为此时会有一定价值。

为什么一段代码只有一个改变的原因很重要?嗯,就像你自己的代码可能会改变一样令人沮丧,发现您的代码所依赖的代码在您脚下发生变化更痛苦。当你的代码必须改变时,它应该响应直接刺激作出改变,而不应该成为附带损害的受害者。

因此,具有单一责任的代码修改的原因最少。

耦合和内聚 #

描述改变一个软件是多么容易或困难的两个词是:耦合和内聚。

  • 耦合只是一个词,描述了两个一起变化的东西 —— 一个运动诱导另一个运动。
  • 一个相关但独立的概念是内聚,一种相互吸引的力量。

在软件上下文中,内聚是描述代码片段之间自然相互吸引的特性。

为了描述 Go 程序中耦合和内聚的单元,我们可能会将谈谈函数和方法,这在讨论 SRP 时很常见,但是我相信它始于 Go 的 package 模型。

库名称的设计 #

在 Go 中,所有的代码都在某个 package 中,一个设计良好的 package 从其名称开始。包的名称既是其用途的描述,也是名称空间前缀。Go 标准库中的一些优秀 package 示例:

  • net/http - 提供 http 客户端和服务端
  • os/exec - 执行外部命令
  • encoding/json - 实现 JSON 文档的编码和解码 当你在自己的内部使用另一个 pakcage 的 symbols 时,要使用 import 声明,它在两个 package 之间建立一个源代码级的耦合。 他们现在彼此知道对方的存在。

糟糕的库名称 #

这种对名字的关注可不是迂腐。命名不佳的 package 如果真的有用途,会失去罗列其用途的机会。

  • server package 提供什么? …, 嗯,希望是服务端,但是它使用哪种协议?
  • private package 提供什么?我不应该看到的东西?它应该有公共符号吗?
  • common package,和它的伴儿 utils package 一样,经常被发现和其他’伙伴’一起发现 我们看到所有像这样的包裹,就成了各种各样的垃圾场,因为它们有许多责任,所以经常毫无理由地改变。

Unix 设计理念 #

在我看来,如果不提及 Doug McIlroy 的 Unix 哲学,任何关于解耦设计的讨论都将是不完整的;小而锋利的工具结合起来,解决更大的任务,通常是原始作者无法想象的任务。

我认为 Go package 体现了 Unix 哲学的精神。实际上,每个 Go package 本身就是一个小的 Go 程序,一个单一的变更单元,具有单一的责任。

开放 / 封闭原则 #

第二个原则,即 O,是 Bertrand Meyer 的开放 / 封闭原则,他在 1988 年写道:

Software entities should be open for extension, but closed for modification. – Bertrand Meyer, Object-Oriented Software Construction

该建议如何适用于 21 年后写的语言?

package main

type A struct {
        year int
}

func (a A) Greet() { fmt.Println("Hello GolangUK", a.year) }

type B struct {
        A
}

func (b B) Greet() { fmt.Println("Welcome to GolangUK", b.year) }

func main() {
        var a A
        a.year = 2016
        var b B
        b.year = 2016
        a.Greet() // Hello GolangUK 2016
        b.Greet() // Welcome to GolangUK 2016
}

我们有一个类型 A ,有一个字段 year 和一个方法 Greet。我们有第二种类型,B 它嵌入了一个 A,因为 A 嵌入,因此调用者看到 B 的方法覆盖了 A 的方法。因为 A 作为字段嵌入 B ,B 可以提供自己的 Greet 方法,掩盖了 A 的 Greet 方法。

但嵌入不仅适用于方法,还可以访问嵌入类型的字段。如您所见,因为 A 和 B 都在同一个包中定义,所以 B 可以访问 A 的私有 year 字段,就像在 B 中声明一样。

因此嵌入是一个强大的工具,允许 Go 的类型对扩展开放。

package main

type Cat struct {
        Name string
}

func (c Cat) Legs() int { return 4 }

func (c Cat) PrintLegs() {
        fmt.Printf("I have %d legs.", c.Legs())
}

type OctoCat struct {
        Cat
}

func (o OctoCat) Legs() int { return 5 }

func main() {
        var octo OctoCat
        fmt.Println(octo.Legs()) // 5
        octo.PrintLegs()         // I have 4 legs
}

在这个例子中,我们有一个 Cat 类型,可以用它的 Legs 方法计算它的腿数。我们将 Cat 类型嵌入到一个新类型 OctoCat 中,并声明 Octocats 有五条腿。但是,虽然 OctoCat 定义了自己的 Legs 方法,该方法返回 5,但是当调用 PrintLegs 方法时,它返回 4。

这是因为 PrintLegs 是在 Cat 类型上定义的。 它需要 Cat 作为它的接收器,因此它会发送到 Cat 的 Legs 方法。Cat 不知道它嵌入的类型,因此嵌入时不能改变其方法集。

因此,我们可以说 Go 的类型虽然对扩展开放,但对修改是封闭的。

事实上,Go 中的方法只不过是围绕在具有预先声明形式参数(即接收器)的函数的语法糖。

func (c Cat) PrintLegs() {
        fmt.Printf("I have %d legs.", c.Legs())
}

func PrintLegs(c Cat) {
        fmt.Printf("I have %d legs.", c.Legs())
}

接收器正是你传入它的函数,函数的第一个参数,并且因为 Go 不支持函数重载,OctoCat 不能替代普通的 Cat 。 这让我想到了下一个原则。

里氏替换原则 #

由 Barbara Liskov 提出的里氏替换原则粗略地指出,如果两种类型表现出的行为使得调用者无法区分,则这两种类型是可替代的。

在基于类的语言中,里氏替换原则通常被解释为,具有各种具体子类型的抽象基类的规范。 但是 Go 没有类或继承,因此无法根据抽象类层次结构实现替换。

Interfaces #

相反,替换是 Go 接口的范围。在 Go 中,类型不需要指定它们实现特定接口,而是任何类型实现接口,只要它具有签名与接口声明匹配的方法。

我们说在 Go 中,接口是隐式地而不是显式地满足的,这对它们在语言中的使用方式产生了深远的影响。

设计良好的接口更可能是小型接口;流行的做法是一个接口只包含一个方法。从逻辑上讲,小接口使实现变得简单,反之则很难。因此形成了由普通行为的简单实现组成的 package。

io.Reader #

type Reader interface {
        // Read reads up to len(buf) bytes into buf.
        Read(buf []byte) (n int, err error)
}

这令我很容易想到了我最喜欢的 Go 接口 io.Reader

io.Reader 接口非常简单; Read 将数据读入提供的缓冲区,并将读取的字节数和读取期间遇到的任何错误返回给调用者。看起来很简单,但非常强大。

因为 io.Reader 可以处理任何表示为字节流的东西,所以我们几乎可以在任何东西上创建 Reader; 常量字符串,字节数组,标准输入,网络流,gzip 的 tar 文件,通过 ssh 远程执行的命令的标准输出。

并且所有这些实现都可以互相替代,因为它们实现了相同的简单契约。

因此,适用于 Go 的里氏替换原则,可以通过已故 Jim Weirich 的格言来概括。

Require no more, promise no less. – Jim Weirich

接口隔离原则 #

第四个原则是接口隔离原则,其内容如下:

Clients should not be forced to depend on methods they do not use. –Robert C. Martin

在 Go 中,接口隔离原则的应用可以指的是,隔离功能完成其工作所需的行为的过程。举一个具体的例子,假设我已经完成了‘编写一个将 Document 结构保存到磁盘的函数’的任务。

// Save writes the contents of doc to the file f.
func Save(f *os.File, doc *Document) error

我可以定义此函数,让我们称之为 Save,它将给定的 Document 写入到 *os.File。 但是这样做会有一些问题。

Save 的签名排除了将数据写入网络位置的选项。假设网络存储可能以后成为需求,此功能的签名必须改变,并影响其所有调用者。

由于 Save 直接操作磁盘上的文件,因此测试起来很不方便。要验证其操作,测试必须在写入后读取文件的内容。 此外,测试必须确保将 f 写入临时位置并随后将其删除。

*os.File 还定义了许多与 Save 无关的方法,比如读取目录并检查路径是否是文件链接。 如果 Save 函数的签名能只描述 *os.File 相关的部分,将会很实用。

我们如何处理这些问题呢?

// Save writes the contents of doc to the supplied ReadWriterCloser.
func Save(rwc io.ReadWriteCloser, doc *Document) error

使用 io.ReadWriteCloser 我们可以应用接口隔离原则,使用更通用的文件类型的接口来重新定义 Save。

通过此更改,任何实现了 io.ReadWriteCloser 接口的类型都可以代替之前的 *os.File。使得 Save 应用程序更广泛,并向 Save 调用者阐明,*os.File 类型的哪些方法与操作相关。

做为 Save 的编写者,我不再可以选择调用 *os.File 的那些不相关的方法,因为它隐藏在 io.ReadWriteCloser 接口背后。我们可以进一步采用接口隔离原理。

首先,如果 Save 遵循单一责任原则,它将不可能读取它刚刚编写的文件来验证其内容 - 这应该是另一段代码的责任。因此,我们可以将我们传递 Save 的接口的规范缩小,仅写入和关闭。

// Save writes the contents of doc to the supplied WriteCloser.
func Save(wc io.WriteCloser, doc *Document) error

其次,通过向 Save 提供一个关闭其流的机制,我们继续这种机制以使其看起来像文件类型的东西,这就产生一个问题,wc 会在什么情况下关闭。Save 可能会无条件地调用 Close,抑或在成功的情况下调用 Close

这给 Save 的调用者带来了问题,因为它可能希望在写入文档之后将其他数据写入流。

type NopCloser struct {
        io.Writer
}

// Close has no effect on the underlying writer.
func (c *NopCloser) Close() error { return nil }

一个粗略的解决方案是定义一个新类型,它嵌入一个 io.Writer 并覆盖 Close 方法,以阻止 Save 方法关闭底层数据流。

但这样可能会违反里氏替换原则,因为 NopCloser 实际上并没有关闭任何东西。

// Save writes the contents of doc to the supplied Writer.
func Save(w io.Writer, doc *Document) error

一个更好的解决方案是重新定义 Save 只接收 io.Writer,完全剥离它除了将数据写入流之外做任何事情的责任。

通过应用接口隔离原则,我们的 Save 功能,同时得到了一个在需求方面最具体的函数 - 它只需要一个可写的参数 - 并且具有最通用的功能,现在我们可以使用 Save 保存我们的数据到任何一个实现 io.Writer 的地方。

A great rule of thumb for Go is accept interfaces, return structs. – Jack Lindamood

退一步说,这句话是一个有趣的模因,在过去的几年里,它渗透入 Go 思潮。

这个推特大小的版本缺乏细节,这不是 Jack 的错,但我认为它代表了第一个正当有理的 Go 设计传统

依赖倒置原则 #

最后一个 SOLID 原则是依赖倒置原则,该原则指出:

High-level modules should not depend on low-level modules. Both should depend on abstractions. Abstractions should not depend on details. Details should depend on abstractions. – Robert C. Martin

但是,对于 Go 程序员来说,依赖倒置在实践中意味着什么呢?

如果您已经应用了我们之前谈到的所有原则,那么您的代码应该已经被分解为离散包,每个包都有一个明确定义的责任或目的。您的代码应该根据接口描述其依赖关系,并且应该考虑这些接口以仅描述这些函数所需的行为。 换句话说,除此之外没什么应该要做的。

所以我认为,在 Go 的上下文中,Martin 所指的是 import graph 的结构。

在 Go 中,import graph 必须是非循环的。 不遵守这种非循环要求将导致编译失败,但更为严重地是它代表设计中存在严重错误。

在所有条件相同的情况下,精心设计的 Go 程序的 import graph 应该是宽的,相对平坦的,而不是高而窄的。 如果你有一个 package,其函数无法在不借助另一个 package 的情况下运行,那么这或许表明代码没有很好地沿 pakcage 边界分解。

依赖倒置原则鼓励您将特定的责任,沿着 import graph 尽可能的推向更高层级,推给 main package 或顶级处理程序,留下较低级别的代码来处理抽象接口。

总结 #

回顾一下,当应用于 Go 时,每个 SOLID 原则都是关于设计的强有力陈述,但综合起来它们具有中心主题。

  • 单一职责原则,鼓励您将功能,类型、方法结构化为具有自然内聚的包;类型属于彼此,函数服务于单一目的。
  • 开放 / 封闭原则,鼓励您使用嵌入将简单类型组合成更复杂的类型。
  • 里氏替换原则,鼓励您根据接口而不是具体类型来表达包之间的依赖关系。通过定义小型接口,我们可以更加确信,实现将忠实地满足他们的契约。
  • 接口隔离原则,进一步采用了这个想法,并鼓励您定义仅依赖于他们所需行为的函数和方法。如果您的函数仅需要具有单个接口类型的参数的方法,则该函数更可能只有一个责任。
  • 依赖倒置原则,鼓励您按照从编译时间到运行时间的时序,转移 package 所依赖的知识。在 Go 中,我们可以通过特定 package 使用的 import 语句的数量减少看到了这一点。

如果要总结一下本次演讲,那可能就是这样:interfaces let you apply the SOLID principles to Go programs

因为接口让 Go 程序员描述他们的 package 提供了什么 - 而不是它怎么做的。换个说法就是 “解耦”,这确实是目标,因为越松散耦合的软件越容易修改。

正如 Sandi Metz 所说:

Design is the art of arranging code that needs to work today, and to be easy to change forever. – Sandi Metz

因为如果 Go 想要成为公司长期投资的语言,Go 程序的可维护性,更容易变更,将是他们决策的关键因素。


« Golang 发布类库 - 2

» Golang 标准库